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ORBIT CONNECTIONS IN A PARABOLIC EQUATION

by

Jack K. Hale and Arnaldo S. do Nascimento

Abstract

For all solutions of a particular scalar parabolic equation in one

bounded space dimension, we discuss the global dynamics on the maximal

compact invariant set and especially the orbits connecting equilibrium

points.
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1. Introduction. In this paper, we study some aspects of the global

dynamics of the scalar parabolic equation

ut Ut x+ Xf(u), 0 < x <T

u = 0 at x= 0,f

2
where X > 0 and f is a C -function.

It is shown in [6] that the initial value problem for (1.1) defines
-xt)t_ - W1'2(0,r) wihTx(t0= ~,.P

a C-semigroup TX(t),t > O, on X = with T ut, )

and u(t,xP) the solution of (1.1) with u(O,x,(O) = w(x). Also, for

each p, {Tx(t)(P,t > 0} belongs to a compact set and has its w-limit

set in the set EX of equilibrium points

EX={PE:(P + f() -o} (1.2)

Regularity theory for elliptic equations implies that (PCEx and

(PEW 1 2 (O,,T) nw 2'P(o' )"
0

Let

A) - {(PEX : Tx(t)fP exists and is bounded for tE (-,*o)}; that

is, the set of globally defined bounded solutions of (1.1). If EX is a

compact set, then every orbit eventually enters a neighborhood of E .

Classical results on dissipative processes (see, for example, Hale [3])

imply that AX is a maximal compact invariant set (sometimes called the

attractor) for TX(t), AX is uniformly asymptotically stable and, for any

bounded set V in X, the W-limit set of V belongs to AX.

- - -.
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This remark implies that the qualitative properties of the flow

defined by (1.1) is completely determined by the behavior of the flow when

restricted to the attractor AX. Restricting the discussion of infinite

dimensional dynamical systems to the attractor has been advocated for some

time in connection with functional differential equations and some types of

partial differential equations (see Hale [4] for a discussion and references).

Any attempt to study the flow defined by (1.1) restricted to A. is

firstly hampered by the difficulties of understanding the bifurcation diagram

for the equilibrium solutions as a function of X in [0,-). After one

obtains the bifurcation diagram, the next step in analyzing the flow on AX

is to determine the OL-and W-limit sets of orbits on AX; that is, which

equilibrium points are connected by orbits.

Very few complete descriptions of the flow on AX have been given in

the literature. Much attention has been devoted to bifurcation diagrams and

local stability, but very little discussion has been devoted to the connections

between orbits. The purpose of this paper is to concentrate on these con-

nections for a particular class of f and domains 0.

An equilibrium point p is hyperbolic if the linear variational

equation for (P does not have zero as an eigenvalue. The unstable manifold

w () of (P has dimension k if this variational equation has k positive -

eigenvalues. If all equilibrium points are hyperbolic, then one can show that

A) U(pE EXW (0)

The problem of determining how the equilibrium points are connected on A

reduces therefore to a discussion of the W-limit set of Wu(T)1{t}P.

Without further detailed hypotheses on f, the authors are aware of

-I"
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only one general result on the flow on Ax. Suppose TX(t) leaves the

positive cone K in X invariant and one restricts the discussion to K.

If EA K - {(W1 .. r} with each (0 hyperbolic, then one can show that

rU

r is odd, dim wu( 2 _I) nK - 0, dim Wu(02p) nK - 1, j = 1,2,... and, on

A. n K, (P2j is connected to 2j-l'2j+ for all j (for a proof, see

Smoller [9] or Hale 151).

To obtain more general results, we assume in this paper that f

satisfies

f(O) = 0, f'(O) = 1 (1.3)

sgn f"(u) = -sgn u for u 0 0 (1.4)

lim sup f(u)/u < 0. (1.5)

Our objective is to discuss the global flow on Ax.

For f satisfying the above (1.3),(1.4),(1.5), Chafee and Infante [1] showed

that there are exactly 2n+1 equilibrium points tP = 04 4,j i 0,1,..,n-1,

of (1.1) for n2 < A < (n+ 1) 2, n = 0,1,2,.., each hyperbolic with P

having j zeros in (0,1), dim Wup+D) = j for all J, dim WU(() - n.

+4~ biuct 2
The solutions ( bifurcate from ( = 0 at X = j T. This gives a

complete description of the bifurcation diagram for equilibrium solutions

for all X > 0.

The main result of this paper is the following, where Y((P,*) denotes

an orbit with a-limit set (P and W-limit set J.
2 ~ n1 2  

_

Theorem 1.1. If f satisfies (1.3),(1.4),(1.5), and n < X < (n+l) 2 , then

there exist y(t0p +), j=0,1.... ,n-I, (P0+ ,+) if j > k,j, k=0,1, ... ,n-1.

For f odd, Henry [6] established the orbit connections in Theorem 1.1

for 0 < X< 16; that is, the A interval which included the first three
I-
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bifurcations. In an attempt to obtain orbit connections for all X > 0,

Hale [5] introduced an approach using the concept of lap number of Matano [8].

Our proof of Theorems 1.1 below is based on the concept of lap number and

dimension theory.

2. Lap number. We first introduce the concept of lap number from Matano[8].

A real-valued function u(r) on the interval I = [0,1] is said to be

piecewise monotone if I can be divided into a finite number of nonoverlapping

P
subintervals I I I (Ullj = I) on each of which u is monotone.

+ pLat k (u) - min{p,pEIN I = U Ii and u/Ii  is monotone increasing.
i-li

Define 1-(u) in a similar way using monotone decreasing. The nonnegative

integers I+ (u),(u) are called the lap numbers of u. Roughly speaking,

it measures the complexity of u. For a solution u(xt) of (1.1) and a

fixed t its lap numbers k±(u(.,t)) are well defined and one can state

the following result.

Theorem 2.1 If f(O) = 0 and u(.,t) is either a solution of (1.1) on [O,T]

then .+(u(.,t1 )) > + +(u(.,tl)) > k-(u(.,t 2)) for any

0 < t 1 t2 < T.

Proof of Theorem 1.1. We first derive some elementary consequences of lap

number which have widespread interest. Let AX be either the maximal compact

invariant set for Eq. (1.1) Let MiE AX, i - 1,2,...,p, be compact invariant

sets in A,. Following Conley [2], we say {M I is a Morse decomposition
p

of A if 'D A "U Mi implies there are integers j > k such that the
jai

8 4,
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w-limit set of (p is in Mk and the a-limit set of P is in MJ,

Following Hale [7], for n < X < X letn n+l'

AJ = {(PEAX:{TX(t)(P, tEIR as well as its a- and W-limit sets

have exactly j zeros in (0,Tr)}.

Each set is compact and invariant. If we define An = {P ,Xx
then the following result was proved in [5]. We give the proof here for

completeness.

Theorem 3.1. If X < X < X the sets A J = 0,1,..,n form a
n n+ l' X

Morse decomposition of AX. Also, A = {W( ,(P.} for all j = 0,1,.. n-1.

Proof. Let us first prove that P is unstable in AX if X < X <n Xn +

for any n. Any function in the stable manifold W ) of P except

zero has at least n zeros in 40,j). We recall that AX is the union of

the unstable manifolds of the equilibrium points. Near any equilibrium point,

elements on the unstable manifolds must have no more than n zeros. Thus,

Theorem 2.1 implies ( o is unstable.
n

j k
Now suppose that PEAA X U A and C((P) 1EAX , W() - EAx.

Since as t - , Tx(t)(P X'EAx, an equilibrium point with j zeros in

(0,W) and since the zeros of ' are simple, it follows that TX(t)D has

j zeros in (0,W) for t < - T with T sufficiently large. Also, TX(t)tp

has j + 1 extreme values in (0,IT). Also, Tx(t)- n fEA as t 4 , with

k simple zeros and k + 1 extreme values in (0,7r). Thus, if (P T=(-T)(,

then Tx(t);o and Theorem 2.1 implies that the number of extreme values of

0 must be > the number of extreme values of n. This implies j > k. If
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of propagation in a homogeneous medium, 1=0, may be considered

as a particular case. However, for 1>1 the similarity solution

explodes and thus it cannot be used to represent in any sense

the general Cauchy problem. This in turn signals that whenever

L>1, or, as we shall find, more generally--whenever the condi-

tion (2) holds, thermal diffusion will be different. The

analysis of this case is carried out in the present work.

Simply stated, the main result ensures the ±sothermaliza-

tion of the medium to a positive average temperature.

Such a result would be natural in a finite domain wi

homogeneous Neumann condition. Here it is derived for a C ichy

problem. It is of course drastically different from diff'

in a homogeneous medium or any infinite inhomogeneous mass

medium, where the average temperature is zero. In a standard

diffusion problem the first non-vanishing term describes the

decay to "average" zero of the thermal pulse. On the other

hand, in our case the calculation of how this average is ap-

proached constitutes the second term in an appropriate asymp-

totic expansion. We plan to report on this in the near future.

One should, however, distinguish between the approach to

the average temperature u at a given point and the behavior at -

infinity. W'hether the isothermalization of the whole space

takes a finite or infinite time still remains to be answered.

Note that the possibility that arbitrarily far particles have

a finite temperature is physically plausible. Because there

7=
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__ __ __ __ __ __ __ __ +k,j

asymptotically stable in BX ( are unstable in BX for j 0,,..n1
s +k,

O,1,...,n. Furthermore, W ((P )n wu(J) is open in B for any

equilibrium point P E B ,j

Proof: If d > 1, p > d, the Sobolev embedding theorem implies WI'P(B)

0

is continuously embedded in C(B). If d = l,p = 2, the same is true. Thus,

there is an C > 0 such that 1p- I < gl -j < F, implies tp

0
has exactly j zeros in (0,1) and p has exactly j + 1 zeros in (0,I).

Theorem 2.1 implies the derivative of W() must have no more than j + 1

zeros in (0,1). Thus, W(p) has no more than j zeros in (0,1). Since

W(c) E BX', it follows that W(W)E AX. Thus, the set A is a maximal

compact invariant set in B kX and is an attractor for the set r of points

in B 'j  with j zeros in (0,1). Since this set r is positively invari-

ant under Tx(t), it follows that A is uniformly asymptotically stable

(the detailed proof is similar to ones in [3] for dissipative systems). Since

S +- +
- {P ,P } the assertions about 03 are true. From Theorem 3.1, it is

+-J
clear that 0kpk are unstable in Bk. This proves the first part of the

lemma.

To prove the last part of the lema, suppose W ((p+)n wu(q;) is not
i

empty and contains an element E B '1 , *g AX. Then W())E AX. Suppose

E > 0 is arbitrary. Since AX is uniformly asymptotically stable, there

is a 6 > 0 such that, if ( is in the 6 neighborhood of A1 , then,

TX(t)(P is in the e-neighborhood of Ai and W(i)E Aj. There is a
X) X
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to = xo(*,) such that TX(t0)* is in the 6-neighborhood of Aj. Continuity

with respect to initial data implies a neighborhood U of * such that

TX(t0)U is in the 6-neighborhood of A. This completes the proof of the

lemma.

Lemma 3.3. If XE (X X ), n >1, then YOP.a ) Y(pq+) exist for

O < j < n-l.

Proof: The manifold Wu((p ) is tangent at (+ to the linear subspace

of X spanned by the eigenfunctions (j,k of the operator 32/x2+ f'(p)

corresponding to the eigenvalue Xj,k, k - 0,1,...,j-l. Furthermore,u +

(PJ,k has k-i zeros in (0,1). Thus, there is a (I, W OPU ) such that

Tx(t)* > (p+ for t < -T if I > 0 is large enough. An application of

the maximum principle yields TX(t)P > P for all t E]R. Since Tx(t)A
j

converges to an equilibrium solution as t , it follows that

Tx(.t) *0 as t - , since (0 is the only equilibrium solution > ( .

The same type of argument applies to VP and V. to complete the proof

of the lemma.

2 2
Lemma 3.4 If n < X < (n+l) , n > 1, and V,* are equilibrium solutions

of (1.1) having respectively J+ k and k simple zeros in (0,1), then

*-p has exactly k simple zeros in (0,1).

Proof: It is clear from the equilibrium bifurcation problems (see (i] that
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<Ej+k 0x. ,1 xE [0,1] x E (0,11

n - xmin {(X)} < 0. Moreover, wienever CPx(X) - 0, for some xE (0,1),

either cp(x) . Mj+ k or ip(x) = m with obvious modifications for the other

cases. Also 0 < tP(0) < *O).

From the above results, by plotting * and (P respectively it

becomes clear that their graphs intersect at least at j points.

Next suppose there are x, < x2  such that *(x I ) = M '(x2) = 0,

> 0 on (x1 ,x2) . We prove that the graphs of P and t0 cannot

intersect twice on [XlX 2]. For this purpose, suppose there are yVy 2

such that x < y 1 < Y2 
< x2 and (y) = (PCYl), (y2 ) = (0(x2),

*(x) < P(x), yl < x < Y2 "

Let = CD/W on [yl,y 2]. Then satisfies

+(2x/) + X(f()-f(o-)) = 0 Y l < x < Y2

X(yl ) > 0 1 x(Y2 ) < 0 ' (yl ) = "(y2 ) =1

By virtue of (1.3), (1.4) and the fact that 0 < i < tP on (ylY 2), the

coefficient of in the above equation is negative. A maximum principle

yields 1 - , which is a contradiction. The cases Y2 = x2 = 1 or

X . yl 0 and other similar situations can be ruled out using the same

technique, thus ensuring that the graphs of V and ip intersect at exactly

j points. This proves the lemma.

- 4 .

I ,
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4. Proof of Theorem 1.1. In this section, we complete the proof of Theorem 1.1.

To do so, we need some concepts from dimension theory.

A subset D of a topological space X is said to separate X if

X-D is disconnected. The proof the following lemma may be found in [7].

Lemma 4.1. Any n-dimensional manifold cannot be separated by a subset of

dimension less than or equal to n-2.

The following result is the first step in the proof of Theorem 1.1.

Leuma 4.2. For n < X < X n+, n > 1, there exist orbits

-= n n (

Proof: For this proof, let X = W0'"P(R). Existence of the orbits Y(P, )Proofo

J,k
has been proved in Lemma 3.3. From the definition of B we have

n,0 n, , +1 hae

Bj B S- ((P+w)U W5((P;)]

+i - n,j
and P (,P are uniformly asymptotically stable in BX '  from Lemma 3.2.

Furthermore Lemma 3.2 implies the sets w = W + n wu(P) are disjoint
,+ =

open sets in BX n wu( )

Since WuQ(P_) ' ~I, the sets &.,+ are disjoint open sets in the

connected n-dimensional manifold Wu((mP). It follows that WO(u ) 'Lef

nl uO.) separates wu(qp) and Lemma 4.1 implies that

n > dim Wu(p, ) > n- 1.

We need a local representation of WU(0 ), From stable and unstable

Goo

manifold theory, if tpa ju0,1,...,n-1 are eigenfunctions corresponding

. .

4



to the eigenvalues 0 < X < '2 < X n  and

(P(C) _ I j'o1 .Pj 'I t,.... Pa E n

= {*PE : =t.(0), "E]R n

then there is a Lipschitz continuous function h : wU(p ), Ih(o0)I-_
X

o(1p_) as I[PI - 0 and an C0 > 0 such that the set
X X

V((P ) - {t p(0) + h(p(ca)), I < Eo

is a neighborhood of P in Wu(P) where C,- maxli.

Now suppose that no point in W(QP0) flV((D) has W-limit set in

Ai - ({PP. Choose (A2 -" n-I = 0 and choose real numbers

0 > 0, E > 0 so small that, for every 0 < I < co , 0 < ljll <l,

the function 1(0) - Oo(l) + htp(OL)), VOo(c) = c1OLP., 0 + 01 1  has no

more than one zero in (0,1). This can be done since h((p) - o(1 oPI as
X

I (P_ - 0.

Let U be the set {n(c), 0 < loO _ £0, 0 < I[tll < U1. Since no

point in w0((pm) ) has W-limit set in , Theorem 2.1 implies that

) C Ax for 4EU%{q). Thus, in a neighborhood of (o ,Wu((P) is not

separated by Wo( 0O,) since WO( u W) is determined by only the n-2 numbers

(A2 ".. n-" This is a contradiction and shows that there is an element in

Wowi)n4Y(%P, ) with w-limit set in X Sn this implies

-1
! , ,



-12-

either ,(P,1 ) or Y(cp ,) exists. Suppose Y((P0 , 0 :) exists. Then

there is a solution u(tx) of the equation with u(t,x) (p(x) as t -0-00,

u(t,x) - tpl(x) as t + - . But then u(t,II-x) - (P1Cx) = (pl(Tf-x) as t-*00

and Y(pp) exists. The same argument applies if one assumes Y((p ,(p)

exists.

From Lemma 3.2, p1 ,P1  are uniformly asymptotically stable in

n 1 1_n,1Bi and &,+ are disjoint open sets in Wu(t0 ) = Bn n wU( 00 ). Since
S0 X

n-I < dim WO((P.) < n, it follows that n-I < diml + < n. Lemma 3.2

implies cp0  is unstable in Wu(go). Choose the connected component
0

C"', o n,l + dein -n 2 . Bn,2 ~ n,lCX of B X that contains both (01 and 01 , define B,2 BX n,

W (P00 ) = BX)2Au((P0 ). Then Wu((p ) separates Wu((P ) and
11 00 0 00

n-2 < dim W, (P) < n-l. Exactly as before, one shows that there

is an orbit in Wl(Ax) connecting tP. to AX. Then one argues as above
100

to see that Y((p00,Ip Y(tp0 ,cP+) exist.

This process is repeated to obtain a proof of Lemma 4.2.

To complete the proof of Theorem 1.1, we must show Y( exists

if j > k. To prove this, fix j and consider the compact invariant set

B, We know from Lemma 3.2 that a+,C- are uniformly asymptotically

iand (p + are unstable with dim W (P) - J. If

u - (P + v, then v - 0 has unstable manifold of dimension j and Lemma 3.4
+ +

implies that the equilibrium points (P (4pk - p for 0 < k < J have

U.
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k zeros in (0,I). One can now repeat the same type of argument as above

to obtain the desired connections taking first W s6P(P +D away from

B j then W 8((d4-D+). etc.

jI
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